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Preface

Classical plate analysis generally assumes initially

perfect plates when considering collapse due to inplane

stresses. This report incorporates the assumption of initial

imperfections in geometry in an analytical investigation

of collapse involving elastic, elastic-plastic and ortho-

tropic plates.

I wish to express my sincere appreciation to Dr.

Anthony Palazotto for his valuable instruction, encouragement

and timely advice. I particularly want to thank my wife

and family for their patience and understanding during my

preoccupation with this thesis.
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a half dimension in the x-direction, in.
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u vol w°  initial displacements in the x, y, z direction, in.
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6incremental displacement parameter, in.

E strain

a stress, stress parameter

aincremental stress parameter

T ij stress, lb/in 2

TO.. initial stress, lb/in2

T incremental stress, lb/in
2

v Poisson's ratio

Vi Poisson's ratio for transverse strain
in the 2-direction when stress is the
1-direction
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Abstract

An analysis is made of the effect of initial imper-

fections in geometry on the collapse of simply-supported

rectangular plates. A Reissner-type variational principle

is employed to evaluate the load versus lateral displacement

of elastic, elastic-plastic and orthotropic plates subject

to compressive loading along two edges. Imperfection size

and shape, plate thickness and aspect ratio, and for ortho-

tropic material, the ply orientation is examined. The

results indicate that the load-displacement curve is

sensitive to the initial imperfection, particularly for

elastic-plastic materials. The effect of plate size and

aspect ratio are similar for all the plates considered

with the collapse stresses higher for elastic plates than

for elastic-plastic plates. The effect of plasticity

becomes insignificant for thin plates when compared with

plates with elastic properties. In general, it can be

stated that the imperfection function determines the plate's

collapse load. For orthotropic plates the effect of ply

orientation is significant at aspect ratios less than 1

but relatively insignificant at higher values when comparing

the minimum collapse stresses. The difference is dependent

upon the magnitude of the ratio of Young's moduli in the

major material axes.
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EFFECT OF IMPERFECTIONS ON THE COLLAPSE

OF RECTANGULAR PLATES

USING VARIATIONAL CALCULUS

I. Introduction

Background

The first problems in elastic instabi. ty were solved

over 200 years ago by Euler (1) working with the lateral

buckling of compressed members. Since that time the science

of structural stability has received attention by numerous

individuals. Because of its application as a structural

member in modern structures, the rectangular plate is of

particular interest in this thesis.

In the late 1800's Bryan (2) studied plates, applying

the theory to the buckling of the sides of ships. In the

early 1800's Timoshenko (3) treated numerous types of

loading and boundary conditions utilizing both the energy

approach and the solution of the differential equations.

In his 1940 work, Hill (4) constructed charts describing the

critical compressive stresses for flat rectangular elastic

plates. The results of the above cited work compare favor-

ably with experimentation.

In 1942 Lundquist and Stowell (5) presented the first

unified treatment of the elastic-plastic compressive buckling

problem, using both the differential equations and energy

methods. However, much of the classical work with elastic-
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plastic plates resulted in critical compressive stresses

which were significantly higher than experimental results.

It was shown >y Onat and Drucker (6 7) for the axially

compressed cruciform column and by Neale (8) for the

cylindrical shell under torsion that these theoretical

stresses could be brought much closer to experimental

results by including in the analysis initial geometric

imperfections. Consequently, the idealization of a geo-

metrically perfect system adopted in the classical approach

no longer remains acceptable. In his work presented in

1974, Neale (9) employed the variational principle and a

Ritz method incorporating imperfections into the analysis

of the plastic buckling of rectangular plates. His resuIts

show much closer agreement to experimental data.

The 1960's and 1970's have seen the increasing use of

composite material particula-ly in structures requiring high

strength-to-weight ratios. These composite materials often

possess orthotropic properties, and consequently modified

theories for the solution of problems where composite mate-

rials are used, are required. Ashton and Whitney (10) present

the theoretical development and solutions for plates fabri-

cated of thin layers of anisotropic material. Jones (11)

and Chamis (12) present the major aspects of the science and

technology of composite materials that are the basics of

todays technology.

These three types of material, elastic, elastic-plastic
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and orthotropic, form the basis of the spectrum of material

properties. With the exception of Neale's work with elastic-

plastic plates, little has been published that illustrates

the effect of initial geometric imperfections on the collapse

of rectangular plates. Consequently, it is this subject to

which this thesis is devoted.

Purpose

The purpose of this thesis is to examine analytically,

the effect of small and consequently unavoidable imperfections

in geometry on the collapse of simply supported rectangular

plates subject to in-plane compression along two edges.

Three different types of material, elastic, elastic-plastic,

and orthotropic, will be compared and the effect of aspect

ratio (i.e. length/width), length/thickness, shape of initial

imperfections, size of imperfection and for the orthotropic

case, ply orientation, will be examined.

The analytical technique that will be used consists

of the formulation of a "rate" or incremental boundary-value

problem, which can be solved in an approximate manner using

a variational principle (13) in conjunction with the method

of Ritz. A stepwise solution of this rate problem furnishes

the pertinent load-deformation behavior (9). Using this

formulation the problem reduces to a set of five algebraic

equations which can be solved incrementally using a minimum

of computer time or possibly an advanced hand calculator or

desk computer.

3



Scope

All the plates examined are 0.1 inches thick. Length-

to-thickness ratios vary from 10 to 400 and aspect ratios

vary from 0.5 to 4.0. For each case an initial imperfection

of 10-6, 0- , 10- 2 inches is evaluated. The effect of the

shape of the imperfection is evaluated using m and n of

1, 3, 5, where m is the number of half sine waves in the

x-direction and n is the number of half sine waves in the

y-direction. For further explanation see results and

discussion. For the orthotropic case, a single ply with

fiber orientation at 00 and 900 with respect to the applied

load is evaluated.

Computer values of critical load are compared with

Timoshenko (3) for the elastic case, Neale (9) for the

elastic-plastic case and Chamis (14), and Mandell (15) for

the orthotropic case.

4



( II. Theory

Since the case of elastic-plastic material is the

most general of the three materials, the theoretical anal-

ysis will center on plasticity with appropriate modification

made for the elastic and orthotropic cases.

Reissner (16 - 19) provided the starting point for

the derivation with his general variational theorem for

stresses and displacements. Reissner's theorem presents

the equilibrium equations and stress-strain relations as

Euler Equations of the variational problem. Boundary

ccnditions for stresses and displacements are the natural

boundary conditions. The method permits independent

selection of both the stress distributions and displacement

quantities in the approximate solution to the boundary-

value problem.

Since the undeformed configuration of the material

is often used as the reference frame, the Lagrangian form

of the equations is more appropriate than the Eulerian form,

which refers to the deformed configuration. In conjunction

with this, suitable definitions of stress and strain are the

Kirchhoff's stress tensor and Green's strain tensor (20).

General expressions for the Euler Equations of the

variational principal and natural boundary conditions can

be developed using the aforementioned relations. A complete

derivation can be found in reference (13). These relations

Care subsequently applied to rectangular plates. In accord-

5



( ance with Neale's work (9), rectangular cartesian coordinates

x, y describe the location of points on the midplane of the

plate and z describes the distance from the midplane, as

shown in figure 1. By assuming normal plane surfaces remain

plane, the displacement components are specified as follows:

Ux =u - zaw

Uy = v - zaw (i)
ay

=z w

where u, v, w are the displacement components in the x, y, z

directions respectively. The Green strains associated with

these displacements are (20):

Exx u - z 2  +

E = av- z 32w + [,W) 2
E - T- a Y

Exy Iu + 3v - 2z ;
2
w + Ww w1 (2)

-x aiy - w

The products and squares of the derivatives incorporating

the transverse displacement w, are the only nonlinear terms

retained. The strain rates can be determined from equation

(2) yielding results which assume homogeneity in time.

(
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Figure 1. Plate Loading and Geometry
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Ex = --- Z~-+--

yy y - y + a

[ G~ ~ LW -L z w + w (3)
xy a-Y -2z -- a y + a a a.ay

where the dot above the term, (), denotes an incremental

function. The incremental stress and strain constitutive

equations may be stated by the following matrix expressions:

C 11 C12 C 13 xx

S = C 22 C23  (4)yy) 12 C22 23 yy(4

FXy C1 C23 C33 ]Txy

in which the quantities Txz ' Tyz, Tzz are considered

negligible by the assumption of plane stress.

For an isotropic solid characterized by elastic-

plastic response incorporating the Von Mises incremental

theory, one may obtain the Cii coefficients in Eq. (4) (21):

1 1  E ( Xx yy)

-V G /
C12 E + 9 2xx tyy) 2 Tyy Txx)

= LG T T --
C 3 xy(2 xx yy)

= + G(2T- TCa2 E 9 yy xx)

C23= - txy(2T yy - txx

8



E =(+ + 2GTxy (5)

where E is Young's modulus and v is Poisson's ratio. If it

is assumed that the uniaxial stress-strain can be described

by a Ramberg-Osgood relation of the form

k
x x (X& (6)Exx E E

where Eo and k are material constants, then for plastic

loading, the hardening function G can be written as

G =3k(VT5)k-1

4J2E0k

The quantity J2 is stated as (21),

J2 = 1/3(Txx2-Txx Tyy + T yy2) +T y2 (8)

To simplify the analysis, k is taken to be 3 so that the

hardening function becomes

G = 27/4E 3 (9)
0

which remains constant throughout the load application.

It may be observed that the strain increments in Eq(4) are

functions of the known stress components and a set of new

incremental stresses. This set of constitutive relationships

is known as the Prandtl-Reuss flow law of plasticity.

Likewise when evaluating an isotropic, elastic material

under plane stress, matrix C.. becomes (22):

9



S-- - =0
S E ' 12 E 13

C21 E C 2 2  -- C2  = 0

1+vC 3 3 E- (10)

As an added feature to the use of Eq(4), one may

modify the expressions in order to account for orthotropic

material properties associated with composites. Using e

as the angle between the major material axis and the x-axis,

the coefficients may be stated as (11):

C1 1 = S cos 4 + (2S12 + $66) sin 2 $ cos2 0 + S22 sin4 e

= S2(sin@4  + cos 4 e) + (S + 22 - S6 6) sin2 e COS 2

C1 3 = (2S11 - 2S12 - $66) sine cos 3O (2S22 - 2S 12 - S6

(sin + cosSs

C 22 = S1l sin4O + (2112 + S66) sin2S cos 20 + $22 cos

C2 3 =(2SII - 2S12 - S 6 6) sin
3 e cosO - (2S2 2 - 2S12 - 6 6

(sine cos3S)

C33 = (2S11 + 2S2 2 - S12 - S66) sine c3sO + (2 2S

(sin 4 + cos 4O) (11)

where

~11 E-

$212 --- E 2

~1s
22 E2

(12)

10
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The quantities E, and E2 are the Young's moduli in the

longitudinal and transverse material directions. The term

Sij is Poisson's ratio for transverse strain in the j-

direction when stressed in the i-direction. G12 is the

shear modulus in the 1-2 plane.

Thus, Eq. (4) is useful for any general material

as long as some constitutive relationship can be found.

Formulation of Rate Boundary-Value Problem for Plates

Applying the general solution of the rate boundary-

value problem, the functional 10 can be stated for a simply

supported rectangular plate as (9)

t/2 b a

( i0 = f f ij Ei + Tij Vki Vk,j -W(;) dxdydz

f ) ) *(13)
-t/2 -b -a

where ij i =t E + 2t E + Tyy Eij i xx xx xy xy YYyy

v v2 + 2Ty +w 2w + T 2
ij ki kj Txx - xy y yy

( ) = C 1 1 ;XX2 + 2C1 2 ; xx ; yy + C 2 2 ;tyy 2 + 213 x xy

+ 2 C23 ;xy ;yy C33 xy (14)

with C.. specified in equations (5) , (6), (11) for elastic-

plastic, elastic and orthotropic materials respectively.

The general variational principal states the functional

I 0 is stationary in the vicinity of the solution. The boundary

(value problem consists of determining the incremental stress

11



and displacement functions, Txx 0 y 'xy , u, v, w, which
xx yy y

satisfy the boundary conditions corresponding to the specified

edge displacements. Using the method of Ritz, an approximate

solution for these incremental quantities can be obtained.

The problem considered is one in which a u displacement

is initiated in a plate characterized by a geometric imperfec-

tion of the form

0 60 m7x n-fy
w = 6 t cos -2 cos 2b (15)

where 60 is a measure of the size of the imperfection

and t is the plate thickness. All other initial stresses

and displacements are zero.

T 0 T 0 Ta = u0 = vO = 0 (16)
xx yy xy

The approximate form of the stresses are taken to be

• • * z m~x~ niry
TX -o+ i Cos --2 cos nr

xx t s 2b

= z m7TX n7 y

yy 2 E COS 2aCos 2b

x Ei sin - sin (17)

xy 3t 2a !F

The incremental edge displacements can be specified as

" 1*

V= 0
mTx nir 18

6t COS Cos 2b

12



( with " being a measure of the size of the edge displacement.

The observer may notice that under the above conditions, the

plate is allowed to move in such a way that midplane stresses

are zero in shear and the y-direction. This can only occur

if the boundary conditions along y ± b are held by a very

flexible support. In order to create v = 0 displacement, an

external source is necessary to relieve any restraining yy

and r midplane stresses. With this artificial boundary, it

is possible to totally isolate the plate's imperfections and

remove post buckling stresses resulting from restrained

boundaries.

The variational principal

0

61 = 0

yields for this problem

310 _ 1o  lO ail) I 3IC

- = - -0 (20)

which is a system of differential equations in the unknown

incremental parameters a, , ', 2 , ; 3.

The stress and displacement distribution can be

determined by adding the incremental quantities to the

previous conditions,

U = 8 x

v= 0
mTTx nTy
- cos 2b

13



Tx + cti z cos mx cos- 2b

T = a2 z cos mx cos nry
t 2a 2b

T = a3 z sin mrx sin nry (21)
xy t 2a 2b

Consequently, the stress and displacement at any

instant of time can be determined by the interative solution

of a set of five algebraic equations in 6, ;, a1, 2 ' a3.

Therefore, the problem may be represented in matrix format

as

1

2

3

with the initial conditions being

6 = 60
0 = O0

a0 = ao = 2 = = 01 2 3

Determination of a.. Matrix

In order to obtain the a.. coefficients, Eq's (3, 17, 18)13

are substituted into Eq. (14) with the required partial der-

ivatives of Eq. (18). To obtain the C.'s, Eq's (10) or (11)
1)

are substituted into Eq. (14). Equation (14) can be developed

for the elastic-plastic case by substituting Eq. (21) into

Eq. (5) and then the results into Eq. (14). The resulting

14
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expression is then introduced into Eq. (13) which produces

a desired form of the functional I0. It is convenient to

take the variation of the function with respect to the

parameters , a, &i, &21 &3 prior to the required integrations,

as several terms become zero in the derivative. Switching

the order of variation and integration is possible since the

integration is independent of the variables of the variation.

Subsequent integration yields the desired a.. coefficients.13

D* *
-a° d+a +a a + a a + a

38 11 12 13 1 14 2 a 3

3108I°- = a + +a a + a a2 +a a

3 a 21 22 23 1 24 2 25 3

0 + +

31 323 1 3O

&42 43 1 44 2 45
=i0  a 5 1 +a a+a e +a 2 +a 5  3 (3

3& a,, + a 52 + a s 53 + a s 54 2 + a 55 (23)
52 53 Is

A detailed derivation and listing of the a i matrix for

elastic-plastic, elastic and orthotropic materials is

included in Appendix B.

At this point the problem is reduced to an iterative

solution of the system of algebraic equations defined by

Eq. (22). For this thesis the solution to the matrix

expression uses the Fortran IV linear equation solver

LEQT1F from the IMSL library. The solution of the set of

linear equation, 6, ;, I, a2, a3, is added to the previous

values, 6, a, al, a2 , 3 and substituted in the ai

15



(
equations, resulting in new values for aij which are sub-

sequently used in the next iteration. This procedure is

continued until the load-deformation curve is determined.

The number of iterations is dependent upon the size of * I
A significant advantage of this procedure is that

the expressions for stress and displacement allow analytic

integration of I° which eliminates the necessity for per-

forming expensive numerical integration at each step and

permits the possibility of adapting the analysis to rel-

atively simple computational devices, i.e. advanced hand

calculators or desk computers.

C

(
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III. Results and Discussion

This section contains a summary of results found from

the different applications of this study. A computer program

was created which utilized the analytical technique presented

in Section II to calculate the load versus displacement data

for the various plate configurations of interest.

Verification of Computer Program

Since the work by Neale on elastic-plastic plates (9)

uses the same analytical technique as this thesis, his results

are used as a comparison, to verify that the developed computer

program produces reliable values.

Sample runs were made with square plates incorporating

2a/t ratios of 20, 30 and 40. The results are compiled in

Table I, comparing the critical compressive loads. The critical

compressive load is taken to be the point at which further

increase in edge displacement results in a decrease in the

compressive load, a. It is apparert that the program produces

results very favorable with those of Neale. In fact, all the

solutions are equal to or lower than the published results. As

is expected with a Ritz approximation, the solution approaches

convergence from above and consequently the results that are

lower than Neale's are assumed to be slightly closer to exact

values due to the convergence technique.

Of significant interest in the study was the solution

convergence criteria. To arrive at a solution,

17
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a particular increment size, 8 , was chosen and the program

carried out the iterations until the stress of the ith iter-

ation was less than the stress of the i-l iteration. This

point was taken as the relative critical stress. The step

size was reduced by one-half and a new relative critical

stress was found. The process continued until the jth rel-

ative critical stress fell within 1% of the j-1 relative

critical stress. This point is called the critical com-

pressive stress for the plate (see Figure 2). The choice

of 8 is of course important, in that by choosing a a too

large one obtains a curve diverging from the correct solution.

On the other hand, selecting 8 too small required many more

iterations than necessary to reach convergence. Since one

advantage of this technique is the simplicity of the numer-

ical iteration process, the requirement for more iterations

than are needed, presents a drawback to adapting the procedure

to less expensive computing devices.

Figure 3 illustrates a typical load versus displacement

curve for an elastic-plastic plate with a = 1.0, b = 1.0,
6

t = .1, E = 30 x 10 , v = .3 and Ramberg-Osgood material

constants, from Equation (6), of E/E = 300 and k = 3. The0

non-dimensional load a/E0 is plotted against the displacement

of the center of the plate in the z-direction. Curves are

shown for initial imperfections of 1 half-sine wave in the

x and y direction, (i.e., m, n = 1), of magnitude 60 = 10- 2,

10- 4 and 10- 6 inches.

19
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A
B
C
D
E

A - 1st Relative Critical Stress
4J)
MB - 2nd Relative Critical Stress

C - 3rd Relative Critical Stress

D - j-1 Relative Critical Stress

E - jth Relative Critical Stress
(Critical Compressive Stress)

60

Lateral Displacement

Fig. 2. Convergence to Critical Stress through
Repeated Iteration

(
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.4

.3

0

$4

a = 1.0

b = 1.0

m,n 1

t =.

0 .1 .2 .3

Lateral Displacement, 6

Fig. 3. Stress vs. Displacement for Typical
Elastic-Plastic Material

21



(With the above results indicating close comparison

with published data, the effect of varying the parameters

was evaluated.

Elastic-Plastic Materials

Load versus displacement curves were obtained for

plates with 2a/t ratios of 10, 20, 40, 100, 200, 400. The

shape of the individual curves are consistent with those

shown in Figure 3. Increasing initial imperfection size

coincides with smaller critical stress and larger displace-

ment at collapse. Since the shape of the curves do not

vary greatly from those shown, individual plots are not

shown for each case. If the a and b dimensions of the plate

(are increased, keeping a/b equal to 1, the stress required to

reach the critical stress declines rapidly for 2a/t less

than 100. The rate of decrease slows and approaches zero

as 2a/t becomes large, (see Figure 4). If the shape of the

imperfection is changed by increasing the number of half-

sine waves, the critical stress is increased significantly.

For all plate sizes, a/b = 1, the minimum critical stress is

found at m, n = 1. Further discussion of the effects of m

and n is found later in the text.

If the ratio of length to width, a/b, is varied, a

significant difference in critical stress is found depending

on whether the length is held constant, (2a = constant), and

the width varied, or if the width is held constant, (2b =

(constant). These effects are shown in Figure 5 with the

22
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Fig. 4. Effect of Plate Size on Critical Stress
for Elastic-Plastic Plate
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aspect ratio plotted against the normalized critical stress.

It should be noted that as a/b increases the critical stress

is minimized at increasing values of m. For a/b less than

approximately 1 the critical stress is lower when the width

2b is constant, whereas for a/b greater than 1 the stress is

increasingly lower when the length, 2a, is constant. This

difference can be explained by comparing the collapse of an

elastic-plastic plate with that of an elastic plate and will

be discussed fully in the following section.

Elastic Material

Figure 6 shows the stress versus displacement curve

for an elastic plate of dimension similar to those of the

elastic-plastic plate in Figure 3. The significant diff-

erence lies in the fact that the three curves for initial

imperfections of 60 = 10- 2, 10
-
4, and 10-6 all rise asym-

totically to the same value. It can be shown that this

value is the classical bifurcation stress described by the

following equation (Reference 3):

a =kTr2D (24)
cr (2b)A

where k =(mb + a 2 (25)

D = Et3  (26)

12 (l-v)'

A = area of load application, 2bt

Since the stress functions assumed for this problem

(do not permit evaluation of postbuckling stresses, the
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stress-displacement curve does not rise above the bifurcation

stress as would be found in an actual plate. For this reason

the stress associated with a lateral displacement of an elastic

plate equal to the thickness of the plate is defined as the

practical critical stress, pr. It is assumed that a de-

flection zeyond this value could be considered as beyond the

practical plate limits.

The shape of the load-displacement curves for the

different initial imperfections are all similar to those

ii Figure 6, therefore not all of the curves are shown.

In Figure 7, load-displacement curves are shown for two

plates of dimension 2a = 5., 2b = 5.and 2a = 10.0, 2b = 10.0,

considering an initial imperfection of 10- . The elastic

curves are compared with elastic-plastic curves for the same

plates. If, in Figure 7, one compares the critical stresses

of tne smaller plate with those of the larger plate, it is

apparent that the effects of plasticity are significantly

more pronounced in the smaller plate than in the larger. In

fact, the difference in the large plate is only approximately

7% as compared to approximately 25% for the smaller plate.

Comparing the whole spectrum of 2a/t ratios, Figure 8, the

effect is obvious. It is clear that in a plate requiring

large stress to reach the critical stress, the effects of

plasticity are much more pronounced and that in a plate

requiring small stress to reach critical limits the plasticity

C effects become almost negligible. In other words, the thicker
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the plate the greater the plasticity effects. This can be

seen by examining the stress-strain curves for an elastic

and elastic-plastic material, Figure 9.

As with the elastic-plastic plates, the effect of

changing the a/b ratio was computed for elastic plates. The

results are shown in Figure 10 along with the elastic-plastic

results. It was found that for an elastic material, it did

not make a difference which dimension, a or b, was kept

constant and that in fact the same curve was found for both

cases.

To explain the fact that the method of changing the

a/b ratio affected the outcome in the elastic-plastic case

and not in the elastic case, one must look at the effect of

the m and n values. By changing the shape of the imperfection

from 1 half-sine to 3 half-sines and, likewise, 5 half-sines,

the effect is that it determines the collapse mode, that is,

the final shape of the plate. It can be seen from Figure 10,

that as the a/ ratio increases the minimum stress for collapse

occurs at higher m values and that for an elastic material the

mimimum values become asvmtotic to some mimimum value. From

this, it can be seen that a plate with an initial imperfection

of 1 half-sine wave will collapse at the same stress as a plate

whose dimensions are odd integers larger than the single half-

sine plate, provided an imperfection exists of the same odd

integer shape. For example, in the case of a square plate

15 inches by 15 inches with an initial imperfection of 3
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half-sine waves in the x and y directions, the collapse

stress is the same as a plate 5 inches by 5 inches, with

1 half-sine imperfection in the x and y direction. Con-

sequently a plate with 1 half-sine wave in each direction

can be thought of as an "elemental component" for larger

plates. (See Figure 11).

With this concept in mind, one can justify the

difference in the two methods of changing the a/b ratio for

an elastic-plastic plate. Figure 12 illustrates the variation

in a/b using both the constant a and constant b methods. In

the b = constant case, for a/b = 3, Figure 12f, the plate is

three times as long as the a/b = 1 case, Figure 12e, the

minimum collapse stress is found when an initial imperfection

of m = 3 is used. Consequently, the "elemental component" is

the same size as the a/b = 1 plate and, therefore, the critical

stress is the same as the a/b = 1 case. Similar conditions

apply for m = 5. For the other method, (a = constant), when

a/b = 3, Figure 12c, the size of the "elemental component" is

1/3 as large as the a/b = 1 condition, Figure 12b, and as was

shown in Figure 8, as 2 a/t decreases, the plasticity effects

become more pronounced. Therefore, the curve for the elastic-

plastic with a = constant, Figure 10, iE expected to decrease

as a/b increases. In effect, the results indicate that a

plate, whether elastic or elastic-plastic, with initial

imperfections in the x and/or y direction will collapse at

(the same stress as the "elemental component", that is, the
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integral part of the plate with a single half-sine wave in

the x and y direction.

Orthotropic Materials

The orthotropic plate considered in this thesis

possesses elastic properties along the major material axis.

Consequently, the results found are similar to those of the

previous section. A significant interest was in the effect

that the orientation of the material had on the critical

stress. The material properties are considered to be

similar to those of boron-epoxy composite with E 1/E2 = 10,

G /E = .03, v 12 3.

It was determined early in the study that results for

off axis orientation were significantly lower than expected.

The reason for this can be seen if one examines the diff-

erential equation governing an orthotropic plate of

arbitrary orientation (11)

D 11W'xxxx + 4 D1 6awxxxy + 2 (D1 2 + 2 D66) 6wxxyy

+ 4D2 6 6w, xyyy + D 2 2 6w,yyyy + Nx 6wxx

where the subscripts denote differentiation with respect to

the x and y directions. The bending stiffnesses, D are

described in detail in Jones (11). The major difference

between this differential equation and that for an ortho-

tropic plate oriented at 00 and 900 to the major material
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( axes, referred to as specially orthotropic, is in the

inclusion of the twist coupling stiffnesses, D16 and D26.

It can be shown that D16 and D26 are dependent upon the

constitutive coefficients C1, and C2 3 of Eq. (4).

However, the form of the stress function assumed, is

such that these cross coupling terms do not carry through

the integration and variation of the functional, illustrated

in Appendix B. Consequently, the stresses at an orientation

other than 00 and 900 are reduced by an amount equivalent

to the cross coupling terms. For an orientation of 00 and

900 these terms D 16 and D26, are not found in the differ-

ential equation and consequently reliable results are

expected.

Mandell (15) made an experimental investigation on

the buckling of anisotropic fiber reinforced plates with

boundary conditions similar to those imposed in this

report. A boron-epoxy plate 11 inches by 9.75 inches

by .096 inches thick, simply-supported along all edges

with an in-plane displacement allowed in the normal direc-

tion and loaded at e = 00, was considered. Results are

shown in Figure 13. Comparison is made with curves obtained

using an initial imperfection of 10- 2 and 10- 3. Note that

the two curves provide upper and lower bounds to the

experimental results. This indicates that the inclusion

of geometric imperfections does indeed result in load-

deflection curves which are representative of actual plates,
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at least in the initial stages of deflection. The critical

stresses are shown for 0 = 00 and 900 along with experimental

values for other angles in Figure 14. A Rayleigh-Ritz theo-

retical solution is also shown. The thesis results compare

favorably at e = 00. At 6 = 900 the results are considerably

above experimental values and even more above the Rayleigh-

Ritz solution. The classical buckling mode for this condition

is with m = 2; however, the initial imperfection shape, in

this case m = 3, establishes the mode at collapse and con-

sequently the critical stress obtained at 900 is higher than

the classical value.

For an a/b ratio of 1, the affect of 2a/t is shown

on Figure 15. For this case both the 8 = 00 and the e = 90

curves are coincident. It can be seen in Figure 16 that this

is not necessarily true for other values of a/b. In fact, for

a/b less than 1 the critical stress for 0 = 900 becomes

significantly less than the 8 = 00 orientation. In Figure 16

the E /E2 ratio is 10, indicating that the strength in the

2-direction is much less than in the 1-direction. If one

decreases this ratio, as with a boron/aluminum composite,

EI/E 2 = 1.44, the difference between e = 00 and 900 becomes

less pronounced. (See Figure 17.) This is as expected since

as E /E 2 tends to 1, essentially isotropic, the curves would

merge into one. The results found for the boron/aluminum

composite compare very well with results published by

Chamis (14) for a/b less than 1. For a/b values greater
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than l,the effect of the imperfection shape, m, is more

pronounced but approaches the same minimum stress as

published by Chamis as a/b increases.

(
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(IV. Conclusions

A. Elastic-Plastic

1. The size of an imperfection greatly affects the

load displacement curve. For an elastic-plastic material,

not only the degree of displacement at any instant, but the

stress at which collapse occurs is dependent upon the

imperfection. A plate with a large initial imperfection

will collapse at a lower stress and larger displacement

than a similar plate with small initial imperfections.

2. As the aspect ratio increases, the normalized

stress for a particular m value decreases to a minimum

and then begins to increase again. The minimum stress

required for collapse is found at increasing values of

m for increasing a/b ratios. In all cases the minimum

stress is fou... with n = 1.

3. The shape of the initial imperfections determined

the shape of the plate at collapse. That is, if a plate

has an initial imperfection of m half-sines in the x

direction and n half-sines in the y direction, it will

collapse in that mode, regardless of plate size or aspect

ratio.

4. Plasticity affects become more and more signif-

icant as the effective thickness of the plate increases.

5. A plate with an initial imperfection of m, n = 1

is the elemental component from which the critical stress

Cof plates with other imperfection modes may be determined.
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B. Elastic

1. The affect of imperfection size is similar to the

elastic-plastic material except that the collapse stress

becomes asymtotic to the classical bifurcation stress.

Because of the form of the assumed stress functions, no

postbuckling stresses can be obtained. Consequently, the

stress at a displacement equal to the thickness of the

plate was assumed to be the practical critical stress.

2. The effect of the magnitude of the imperfection

on the practical critical stress becomes more pronounced

as the imperfection size increases, that is, the practical

critical stress decreases with increasing imperfection size.

3. Critical values computed are dependent upon the

imperfection shape, m. Individual critical stresses may be

higher than classical values because not all mode shapes

are considered.

4. The effects of plate size, aspect ratio and

imperfection shape are all similar to those of the elastic-

plastic case.

C. Orthotropic

1. Imperfection size and shape, plate size and aspect

ratio all have affects similar to those of an elastic iso-

tropic material.

2. The orientation of the plate has a significant

effect on the collapse stress at a/b ratios less than I.

The relative difference between E and E2 determines the

( magnitude of the difference.
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Appendix A

Material Properties

1) Elastic Plastic

E = 30 x 106 lb/in 2

E0 = 100,000 lb/in 2

G = 27/4E 3

0

v :0.3

k= 3

2) Elastic

E 30 x 106 lb/in2

v =0.3

3) Orthotropic

Boron-Epoxy

E, = 30 x 106 lb/in2

E2 = 3.0 x 106 lb/in
2

G 1.0 x 106 lb/in

1 =0.31 2

Boron-Aluminum

E, = 35 x 106 lb/in
2

E2 = 24.3 x 106 lb/in 2

G,12 =11.6 x 106 lb/in 2

v 1 = 0.24

(



( Appendix B

Calculation of aij Matrix

Beginning with the functional,

t/2 b af fij ij Tijvkijvk,j W(t

-t/2 -b -a (BI)

where r.. E =T E + 2 E + E (B2)
iJ ij xx xx xy xy yy yy

Tij Vk,i Vk,j T xx ax + 2 TXy " -  + T/ (B3)

2 y 2
2W(t) = C11Txx + 2C2 + C 2 2 T + 2C1 3 T Tyy xx xy

+2 xy ; y + 2C 3 2 (B4)
+ 2C3 y 3xy

To get 10 in terms of known quantities, substitute the

assumed functions

u = -8 x (B5a)

v= 0 (B5b)

Cos mrx ny
=6t cos -2 cos 2b (B5c)

* + t mx csny
xx - +  cos--2 cos - (B6a)

0 * mTrx nTryy = 2 - cos - cos 2

yy =a2t CS2a %s 2b (B6b)
0 z .Mrrx .n~= s x n'y (B6c)xy 3  sin a 2b

u -8 x (B7a)

v= 0 (B7b)

w 6 t Cos m~rx Csnry (B7c)2a cos 2b

z MTX nmy (B8a)
txx 1-o+co acos 2b
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T =2ZCOS m XCOS (B8b)

T a3 sin mTx sin nwy (B8c)

The strain rate equations are:

E au - z 32w + ;w 3w (B9a)
xx 7 x ax

= _v Z ; 2 + 3W 9w BTb
EY =av-za 2  +awa (B9b)

xyy
--y -x axay ax D

+ aw aw (B9c)

The derivatives may be found from Equations (B5 - B7),

au = -8", 3v = 0, aw = -m7 6t sin mnx sin nwy (B10)
ax x x 2a 2a 2b

au = 0, Dv = 0, aw = -n7 At cos mrx sin n~ry (BIl)
ay ay ay 2b 2a 2b

a2, = 0 -m2 2 6t cos mwx cos niy (B12)
x2  4a 2a 2b

2 w = -n2 ct cos mrx cos nry (B13)
Tb r4b2 2a 2b

a2W = mn 2 At sin mnx sin n7y (B14)
axay 4ab 2a 2b

aw = -mn 6t sin mx cos niTy (B15)--x 1 - --a - 2 25

aw = -n7 St cos mix sin nny (B16)
-y 2b

If Equations (Bi0 - 16) are substituted into (B9), the

results become

E = -8 - z -m 2 2 6t cos mix cos nny
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+(-mT 6 t sin mirx cos n (mr 6 t sin mwx cos niry (Bl7a)
2a- 2b \ n a - 2b

,, -zy-n 2 9 T t cos mlTx COS fly

I 4b 2a 2bL+( -n t cos mx sin nm i-n t cos mrx sin nirY)] (Bl7b)

( b 2a 2b 2b 2b

Exy 2Z mnr 2  t sin mrx sin Ry
I- ( 4ab 2a 2b

+ (-mTr 6 t sin mlx cos n7 y -nT 6 t cos mx sin nry
\2a -2a 2b A(Tb 2a 2bJ

+ (-mw 6 t sin mirx cos n7 6-nl 6 t cos mnx sin n)y (Bl7c)
ia 2a 2b 2b 2a 2b

Equation (B3) can now be rewritten with the use of equations

(B8) and (B10 - 16).

Tij V, Vkj [(- + a1 z cos m_x cos n y )
F -a 2b

-m t sin mrx cos niry )(-mT 6 t sin mx cos nrry
2---a 2b 2a 2a 2b

+ 2( z sin mnx sin niy (-m7 6 t sin mx cos ny
\ t 2a 2bA 2' a 2a 2b/

.(-nT 6 t cos mir.T. sin ny
-b 2a 2b

Tx 2 COS mx COS n X-n 6 t cos mx sin ny

I, t 2a 2b 2a 2b/

*f-n t cos mrx sin n7y (B18)
7- a 2b )

Similarly, the substitution of Equation (B6, 8) into

Equation (B4) results in:

W(;) 1C + z cos mx cos__

(*(-0+ z " COS mnx cos n )
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+ 2C z Cos miTx Cos niy a Z Cos mTx Cos ny12(+&1 t 2a 2b X2 t 2a 2b

+ C22(&2 z COS m7x cos ny X; 2 z cos m~rx Cos n7ryI
+ 2a 2b t 2a 2b J

+ 2C 13 + z-cos mx cos nRy a z sin m~rx sin ny
tE .2a 2b t 2a 2b

+ 2C2 3( 3 z sin mnx sin ny)( a2 z cos mTrx cos nry)

i 3 (& 3 z sin mrx sin ny )( 3  (B19)
t 2a 2b t 2a 2b

The expansion of Equation (B2), using (B6) and (B17), produces

x x = ;* + ;z(-m 2 r 2 ; t cos mix cos niy

XX XX -Ca2z 2 2b
-( a m2 2t2 6 ; sin 2  m nx cos 2  niy

2a 2b

2- 2~ 2b)CS2 CSn"*y+ 1 __m__ os mix cos 2 nmy
Csz m mr x Cos nTy cos1yMsTn m x o w y

-a - 2ab 4a2 2a 2b

2 2t *2 7XCS

+ z M2t Tr ;(Cos -m~x Cos ab) sin2 ~ cs n~y (B20a)

2T E -2a 3 z
2  sin 2 mrx sin 2 wry

Xy XY 2a 2b

+2 o3 zt mnr 2 6 6 sin 2 mix sin 2 nTry cos mnx cos nzy (B20b)
4ab 2a 2b 2a 2b

a E = a2 z 2 n 2 r 2 6 cos 2 mnx cos 2 nry
YY YY 4b2 2a2b

+; 2 zn
2 7 2t 6 6 cos3 mrx cos wiy sin 2 niy (B20c)
42 2a 2b 2b

Since not all the terms of the integrand of I0 involve all

the incremental parameters, it simplifies the mathematics to

take the variation of the integrand with respect to 6, o, a,

a2, a3 before performing the integration, with the result that
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several of the partial derivatives become zero. Switching

the order of the integration and the variation does not

affect the solution since the variation is taken with

respect to parameters independent of the integration

parameters x, y, and z. Consequently,

r(. Ti. Ei. + ri kivkj-W d dy dz

becomes

f f1 [ij + Tij Vk,i vk,j - W(r))dx dy dz (B21)

with similar expressions for the remaining incremental param-

eters, Carrying out the above actions involves considerable

algebra and simple calculus and therefore all the required

steps are not shown. It should be observed that by assuming

a function for stress intensity of the same form as the

imperfection, one obtains relations which reduce the com-

plexity of the mathematics. This however, eliminates the

possibility of relating the stress boundary to a post

buckling consideration. Thus, one of the drawbacks to a

stress intensity function along a boundary is to produce

what may be thought of as unrealistic displacement conditions.

The approach followed herein is an attempt to isolate

imperfections and as such the stress expressions assumed,

can be justified.
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The W(;) term of the functional 10, contains the

constitutive coefficients C.., that vary with material1]

property. To illustrate, the calculation of a23 is

shown as an example. From Equation (23) of Section II

it can be seen that a23 is the coefficient of al in the

variation of 10 with respect to . Upon taking the

variation of the integrand of 10 with respect to ;, the

expressions become:

i 1) = z m2I 2 6t cos mffx cos nffy
4ay- 2a 2b

-M 27T2 t 2 6 6 sin 2 mfrx cos 2 niy (B22)
4a2  2a 2b

(Tij vk, i vk,j) = 0

aW(r) =-C a zcos mfx cos nf (B23a)

The only term containing a coefficient of a is Equation

(23a), consequently to find a23 one must integrate (B23a).

However, C1, must be expressed in terms of the material

constitutive relations. For an elastic-plastic Equation

(B23a) is expanded to:

= - {1 a1 z cos mffx cos n7
IE t 275

+ G 4 C2 cos mxz cos 2 mrx
2a 2b f 2 2--a

Cos 2 niy
( "2b
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+2 2 a 
2 cos mx cos ny -4 a a,1  Z2 coS 2

2a 2b t

mnx cos 2  y
2a 2b

4 a2 z3  3 m__x cos niry 2aa 2 z Cos mrx
2 2a 2b 3 2a

os 3 n y
2b

+2 z 2 &1 t2 Cos2 mx Cos 2 n y- 2a a Z 3 b
t 2 2a 2b 1 2  -E3

m x CO s3 ndyy
2a 2b

Du rnCos t MinXt COSe nry (B23b)
t2a 2b

The above expression is integrated as shown

t/2 b a
DW (-r) dxdydz

f f[cauii 4a21

-t/2 -b -a

During the integration with respect to z, all terms con-

taining odd powers of z go to zero due to the symmetry of-r

the plate. Consequently, the expression is reduced to:

t/2 b a
/ f [--8Oe1ali - 4cya 2 &)t2 COS2 m7x

-t/2 -b -a

"COS 2 nb ] dxdydz (B23c)

Factoring constants outside the integral and integrating

C with respect to z produces:

56



b a

Gt( 8 aotl~ 4 ac 2 o m7rx cos ny dxdy
108'1f 2a 2b )(23d)

-b -a

Integrating in x and y, using

cos 2 CX dX = + sin 2CXJ 2 4C

where m7 = C
2a

For odd values of m and n, the expression reduces to:

0 0 L_ Go 23a-a, )&1 (tba) (23e)

36 27

Since the only values of m and n that will fulfill the

boundary conditions are odd integers, i.e., 1, 3, 5...,

Equation (B23e) is the complete form of the expression.

Upon completion of all calculations involving the coeffi-

cient of the a2j row, the quantity in parentheses, (tba),

may be divided out of the equation, leaving:

a23 = 1 Ga 2c O- 2 (B24)
27/

In a similar manner the remaining a.. terms can be
1)

found. For an elastic-plastic material, the a.. coefficients13

are calculated to be:

a 1 2
a1 1

a12 =

a 13

12
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(
a =1 na 2

a 15  1lna,
6 mb

I ~a2 1 =1r-'n rt( 2

S2a)

a2 4=+ G 16 G 2 + 1 2a - 2

a2  = Ga(2 - 2 )

a 24 .= - a)

a = Ga
25 =--- 3

a 3 1 = (mt) 
2

(2a1

a2 =- -12 Go 2a [%2
a32  27~

a =  i G12 (2+ 3 (2 -c Ot
a33  -- 2 2

E -7 320

a 1
= G - G[ c(2a - a2)(202  a ) 2 2

a - -G 02 3 2a 2-11
160 \/

2b

a 4 2 = Go(4o1 5- 5 2)

a 4 3= a 3 4

at4-1 - G I' a2 + 3 2L- 1)

a 45 = -G a 3 (2
-
2 - a"1)

(5
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V)

(
a 5 1=/mTnt nzrt,

a 5 2  2 GcOL3

a 53  G ' 32a - a2,
320 \ -

a5 = G a (2a, 2 - a

a5  = l+v + 27 Gaz  (B25)

160 3

If one applies Equation (B23a) to an elastic material

and makes the substitution for C11 the calculation simplifies

'M follows

W(;) -C 11 a1 z cos mnx cos n~y (B23a)
t 2a 2b

where

C11 =1
E

Again, the integral reduces to zero when integrated with

respect to z. Consequently,

a. 3 = 0

Likewise, the remaining a.. coefficients for a material

displaying elastic properties are determined as:

a,, =a, a 2 =

1 ,- (na 2
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a =fa~ a 1 = mnrt 2 6

a22 4 C1 a 2 3 =0

a 2 4 =0 a 2 5 =0

a 3 1  M t) 2  
a 3 2  0

a = -C a34 12a3 11 34 12

a3 5 = 0 a4 1  2nTrt2

S2b1

a 4 2  =0 a 3

a 4 4  -C22 a =0

a5 = (mTt \fnTt\ a2 = 0

a 5 3 =0 a 5  = 0

a 5 5  33 (B26)

where C.. is given by Equation (10) of Section II.

Since the only difference between the elastic and

orthotropic constitutive relations are through the inclusion

of the differences in properties in the longitudinal and

transverse direction, and in the coupling of the properties,

very little difference is found in the calculation of the

a., matrix. Consequently, the a., terms for a material

displaying orthotropic properties can be expressed as those

found in (B26) where the C..'s are given by Equation (11)

of Section II.
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